Conditional Diffusion Guidance under Hard Constraint: A
Stochastic Analysis Approach

Zhengyi Guo * Wenpin Tang * Renyuan Xu

Janurary 21, 2026

Abstract

We study conditional generation in diffusion models under hard constraints, where gener-
ated samples must satisfy prescribed events with probability one. Such constraints arise nat-
urally in safety-critical applications and in rare-event simulation, where soft or reward-based
guidance methods offer no guarantee of constraint satisfaction. Building on a probabilistic
interpretation of diffusion models, we develop a principled conditional diffusion guidance
framework based on Doob’s h-transform, martingale representation and quadratic varia-
tional process. Specifically, the resulting guided dynamics augment a pretrained diffusion
with an explicit drift correction involving the logarithmic gradient of a conditioning function
P(Yr € S|Y; = y), without modifying the pretrained score network. Leveraging martingale
and quadratic-variation identities, we propose two novel off-policy learning algorithms based
on a martingale loss and a martingale-covariation loss to estimate h and its gradient using
only trajectories from the pretrained model. We provide non-asymptotic guarantees for the
resulting conditional sampler in both total variation and Wasserstein distances, explicitly
characterizing the impact of score approximation and guidance estimation errors. Numer-
ical experiments demonstrate the effectiveness of the proposed methods in enforcing hard
constraints and generating rare-event samples.

1 Introduction

Diffusion models have emerged as a powerful class of generative models capable of producing
high-quality samples across a wide range of domains, including image synthesis, molecular design,
and time series generation. Notably, they have played a central role in the success in text-to-
image creators such as DALL-E 2 [69] and Stable Diffusion [72]; in text-to-video generators such
as Sora [66], Make-A-Video [75] and Veo [32]; and more recently, in diffusion large language
models such as Mercury [52] and LLaDA [64]. In many downstream applications, however,
the objective goes beyond unconditional sampling from a data distribution. Instead, we are
often interested in generating samples that satisfy prescribed structural, functional, or feasibility
constraints. Such requirements naturally give rise to the problem of guided or fine-tuned diffusion
sampling, in which a generative model is adapted to target a conditional distribution associated
with a desired event or property.

This demand for conditional generation arises from two closely related but distinct consid-
erations. First, in many applications, generated data must respect hard constraints dictated
by physical laws, operational rules, or feasibility requirements. Examples include safety-critical
systems, regulated decision-making pipelines, and constrained design problems, where violations
are not allowed and must be ruled out at the level of the generated distribution. Second, in
domains such as finance, healthcare, and large-scale service systems, there is a growing need for
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stress testing and scenario analysis. In these settings, we seek to simulate rare but high-impact
events (such as extreme market movements, adverse clinical outcomes, or system overloads)
that occur with very low probability under the empirical data distribution. Addressing such
problems requires generative models that can reliably produce samples from rare-event regimes
rather than typical scenarios.

Modern diffusion models are typically trained in a pretraining phase to approximate the
unconditional data distribution. Concretely, a pretrained score-based diffusion model specifies
a stochastic sampling dynamics of the form:

aYe = (F(8.Y) + so(t, Y0) ) dt + g(t)dB:,
where {B;};>0 is standard Brownian motion, f(t,y) and g(t) are prescribed model parameters,
and sg(t, y) is a learned score function parametrized by 6. The function sy is trained offline, using
samples from the data distribution, to approximate the score (the gradient of the log-density)
of the forward diffusion process (See Section [2| for details). For a well-trained diffusion model,
the terminal distribution of Y7 is expected to be close to the target data distribution pgata(-)-

The pretraining of diffusion models is computationally intensive and generally requires ac-
cess to large and representative datasets. As a result, such models are typically trained once
to approximate the unconditional data distribution and subsequently reused across multiple
downstream tasks using guidance or fine-tuning. Given a pretrained diffusion model, existing
guidance mechanisms can be broadly categorized into several paradigms, including supervised
fine-tuning with regularization (often referred to as soft guidance) [51l 83 R6], conditioning-
based approaches [20] 38], reinforcement learning—based methods [25] 26, 31, [55] 73], 08, 99],
and more recent preference-optimization frameworks [90] [05]. While soft-constrained or reward-
based guidance methods are often computationally convenient, they incorporate target criteria
through penalty or reward terms in the optimization objective and, as a consequence, generally
do not guarantee that the resulting generated distribution is supported on the constraint set
or that the constraint is satisfied with probability one. As a result, such methods may gen-
erate samples that violate prescribed constraints, which is a critical limitation in applications
requiring strict constraint adherence or reliable rare-event simulation.

In contrast, hard conditioning aims to generate samples by replacing the original generative
law with the conditional law given a prescribed constraint set, under which the terminal output
satisfies the constraint with probability one. This setting is substantially more challenging,
particularly when the conditioning event is rare under the data distribution. In such cases,
the conditional law concentrates on low-probability or geometrically thin regions of the data
domain, rendering naive rejection sampling or importance reweighting ineffective. Enforcing
hard constraints therefore requires modifying the entire generative trajectory, rather than only
its terminal distribution. Designing a principled, theoretically grounded, and lightweight post-
training mechanism that achieves this goal—without modifying the underlying pretrained score
function—remains an open problem in the diffusion model literature.

Our work and contribution. This paper develops a principled framework for Conditional
Diffusion Guidance that directly addresses these challenges. Our approach is rooted in classical
stochastic analysis and exploits the probabilistic structure underlying diffusion models. Specif-
ically, we adopt a conditioning-based perspective closely related to Doob’s h-transform, which
characterizes the law of a diffusion process conditioned on a terminal constraint via a change of
measure. In this formulation, the central object is the function:

h(t,y) =P(Y7 € S|Y; = y)

where S denotes the constraint set. The function h represents the conditional probability under
the pretrained diffusion dynamics, and induces a drift correction that enforces the constraint.



Namely, the resulting guided dynamics take the form:
4 = (F(t, %) + so(t, V) + 5(t)*Vog h(t, Y;*) ) dt + 5(1)dB;.

where {B;};>0 is a copy of Brownian motion. We provide theoretical justification for this
construction by proving that the terminal output satisfies

Y7 ~(Z|Z€S) with Z ~ paasal)-

Importantly, the proposed guidance mechanism does not modify the pretrained score network
sp; instead, it augments the sampling dynamics with an additive guidance term V log h, making
the method lightweight in both training and implementation.

Although Doob’s transform has been explored in the literature for guidance, existing ap-
proaches typically rely on stochastic control or reinforcement-learning formulations to enforce
soft constraints. In contrast, our viewpoint is fundamentally probability-theoretic: we exploit
martingale properties as well as quadratic-variation identities to derive learning objectives for
the h-function and its gradient directly from the dynamics of the pretrained model. This leads
to a powerful learning framework that is effective in forcing hard constraints.

Specifically, leveraging the (local) martingale property of h(t,Y;), we propose the Conditional
Diffusion Guidance via Martingale Loss (CDG-ML) algorithm, which learns A(-, -) by minimizing
the Lo loss

T
min B 7 { / (E(t, Y)) — 1(Yr € S))zdt} :
0
This is because h(-,-) is the unique minimizer of the above objective function (under suitable
conditions) and Efy 71[-] is the expectation with respect to the law of the process {Y;}o<t<r.
However, learning a good approximation to h alone does not guarantee a good approximation
of Vlegh = %, a difficulty that is well documented in practice. To address this challenge, we
introduce a novel approach that learns Vh directly via quadratic variation. Observing the
quadratic variational process follows d[h,Y]; = g(t)>?Vh(t, Y;)dt, we propose the Conditional
Diffusion Guidance via Martingale-Covariation Loss (CDG-MCL):

T7 o1 dh Y] )2
inE gt Y,
s o [/0 (e o)

which estimates Vh via quadratic-variation information.

Both CDG-ML and CDG-MCL operate solely on samples from the pretrained diffusion,
require no access to the underlying data distribution, and are grounded in tools from stochastic
analysis. To the best of our knowledge, this combination of martingale and covariation-based
learning objectives for diffusion guidance is novel in the literature. In practice, we parameterize
I(-,-) and q(+,-) in both loss functions using neural networks.

I

A central contribution of this work is a rigorous theoretical analysis of the proposed frame-
work. We quantify the discrepancy between the target conditional data distribution and the
distribution induced by the learned guided dynamics using two complementary metrics: total
variation distance and Wasserstein distance. In particular, we establish nonasymptotic total
variation bounds that decompose the error into contributions from (i) the pretrained model
approximation and (ii) the learned guidance error (Lemmas and , leading to an explicit
end-to-end guarantee for conditional sampling (Theorem [4.4]). Total variation provides strong
distributional guarantees under minimal structural assumptions. In contrast, under additional
regularity and stability conditions, we derive Wasserstein-2 error bounds for the guided dy-
namics (Theorem , which offer a geometrically meaningful notion of error closely tied to
contraction and stability properties of stochastic differential equations. Together, these results



elucidate the trade-offs between statistical strength and analytical tractability in conditional
diffusion guidance.

To complement the theoretical analysis, we present numerical experiments that investigate
the effectiveness of the proposed Conditional Diffusion Guidance framework in enforcing hard
constraints and generating rare-event scenarios. The experiments illustrate how guidance learned
from pretrained diffusion trajectories reshapes the sampling dynamics to concentrate on low-
probability regions of the data distribution that are inaccessible to naive sampling. We compare
the CDG-ML and CDG-MCL algorithms in terms of constraint satisfaction, sampling stability,
and distributional accuracy, thereby highlighting the practical implications of learning the guid-
ance function versus its gradient. These results provide empirical support for the theoretical
guarantees and demonstrate the applicability of the proposed framework to stress testing and
rare-event simulation tasks.

Closely related literature. In this paper, we focus on supervised guidance via endogenous
conditioning. The underlying idea is closely related to Doob’s h-transform, with the central task
being the estimation of the conditioning function h. Related works based on the h-transform
framework, such as [19, 23] 67, 42], formulate the problem from a stochastic control perspective
and treat % as the optimal control to be learned. In contrast, our approach is fundamentally
probability-theoretic, relying on martingale properties and quadratic-variation identities of the
pretrained diffusion. A key limitation of control-based conditional diffusion methods is that
they are inherently on-policy: learning the guidance requires simulating trajectories under the
evolving post-training dynamics. As a consequence, the data distribution used for learning
depends on the current control approximation, introducing distribution shift and feedback effects
that complicate stability analysis and the separation of modeling error from guidance error.
Our framework avoids this issue by learning the conditioning function entirely off-policy using
trajectories from the fixed pretrained diffusion, thereby decoupling learning from sampling. In
addition, different from our rigorous theoretical foundation, none of these control-based papers
provides approximation guarantees for their proposed conditional sampling methods.

Our work is closely related to the literature on classifier guidance [4, 20, [74, [87], in which
an auxiliary classifier/label is used to steer diffusion sampling towards desired attributes or
outcomes. This line of work includes both algorithmic developments [5], [63] and recent efforts to
understand the statistical properties of classifier-guided diffusion [96]. Classifier guidance also
provides an important conceptual link to reinforcement learning from human feedback (RLHF),
where human preference or reward models play a role analogous to classifiers by shaping the
sampling dynamics of generative models [38] [93]. For broader overviews of fine-tuning diffusion
models using RLHF, we refer to [13] [15] 306, [60} 85, 92 O5] 97].

Our framework is also closely connected to pluralistic alignment [79] 57][3, in which diffu-
sion guidance is driven by multidimensional reward or preference structures (see and the
discussion thereafter). From a learning perspective, this connection places our work in close
relation to multi-task learning, where multiple objectives or constraints are incorporated within
a unified modeling framework.

Finally, the targeted applications are closely related to the literature on rare-event simulation
[3, I1], where the objective is to efficiently sample from low-probability regimes, often beyond
the reach of classical importance sampling techniques [8, [9]. There is also growing interest in
the use of diffusion models for problems in operations research and stochastic simulation; see,
for example, [58].

Organization of the paper. The remainder of the paper is organized as follows. We start
with background on diffusion models in Section In Section [3| we build the foundations

!Pluralistic alignment refers to multi-objective alignment aimed at integrating complex and potentially con-
flicting real-world values; see https://pluralistic-alignment.github.io/ for recent developments.
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for conditional diffusion guidance, leading to novel methodologies. In Section [, we provide
theoretical results of the proposed methodologies. Extensions of the proposed methods are
discussed in Section Numerical experiments are reported in Section [f] We conclude with
Section [7

Notations. Below we collect a few notations that will be used throughout.
e R is the set of real numbers.

e For z,y € R 2.y denotes the scalar product of x and y, and |z| := /z - z is the Euclidean
norm of z.

o For A = (a;j)1<i j<d a matrix, |[A|p := ,/szzl algj denotes its Frobenius norm.

e For f a function on X, |f|s := supy |f(x)| denotes its sup-norm.

e For f:]0,00) x R? 3 (t,x) — R, 9;f denotes its time derivative, V£ is the gradient of f
and O f := ;TJ; its k" coordinate, and Af := 22:1 g%{ is the Laplacian of f.

e For Z a random variable, [EZ denotes the expectation of Z.

e Let p(-) and ¢(-) be two probability distributions defined on the same measurable space.
The total variation distance between p and ¢ is defined by drtv(p, q) := supA‘p(A) — q(A)‘.
The Kullback—Leibler (KL) divergence from g to p is given by dky,(p, q) := [ 10g(§—§) dp,
whenever p is absolutely continuous with respect to ¢q. Finally, the Wasserstein—2 distance

between p and ¢ is defined as Wa(p, q) := (imf7 E(x )y UX - Y]Z] ) 1/2
is taken over all couplings v of p and q.

, where the infimum
We use C for a generic constant whose values may change from line to line.

2 Background on diffusion models

This section provides preliminaries of score-based diffusion models. We follow the presentation
of [81]. Diffusion models rely on a forward-backward procedure: the forward process transforms
the target data to noise, and the backward process recovers the data from noise.

Let paata(-) € P(€ R?) be the target data distribution. Fixing 7" > 0, the forward process
{Xi}o<i<r is governed by the stochastic differential equation (SDE):

dX; = f(t, Xy)dt + g(t)dWi, Xo ~ paatal-), (2.1)

where f: Ry xR - RY, g: Ry — Ry, and {W;}¢>0 is Brownian motion in R?. We require
some usual measurable conditions on f(-,) and g(-) so that the SDE is well-defined, and
that X; has a smooth probability density p(t,z) := P(X; € dz)/dx (see [80]). By the time
reversal formula [1l [35], let

dyt :?O(tayt)dt_{'g(T_t)dBtayO Np(Ta ')a (22)

whose drift is:

F(ty) = —f(T = t,y) + 5(t)*Vlog p(T — t,y). (2.3)
Here { B; };>0 is an independent Brownian motion in R%. The processes {X;}o<i<7 and { X7_¢ Yo<i<T
have the same marginal distribution [I], 35]. Hence the output X follows the desirable distri-
bution pgata(-)-

Remark 2.1 (Examples). In practice, notable examples include the Variance Exploding (VE)
model [49] and Variance Preserving (VP) model [78], which serves as a demonstrative case
throughout the paper:



o (VE): f(t,x) =0, g(t) = /2t + € for some (small) ¢ > 0.

e (VP): f(t,z)=—% (a + (b_Ta)t> z, g(t) =1/a+ % for some b > a > 0.

The main challenge in sampling the process X is that the data distribution Pdata(+) 18 un-
known, and consequently the associated score function V log p(-,-) is not available. Moreover,
the initialization X ~ p(T, ) required for each sample generation also depends on pgata(-). The
idea of score-based diffusion models is to learn the score function via a parametrized family of
functions {sg(t,x)}¢ (e.g., neural networks), with a limited number of samples from pgata(:) (see
[37, [76], [78]). The resulting backward process {Y; }o<i<7 for sampling is:

dY}/ = f(t, Kﬁ)dt + g(t)dBtv Yb ~ pnoise(')a (24)

where g(t) := g(T —t) and

f(tvy) = _f(T_t>y) +g(T_t)289*(T_tay)7 (25)
serves as an approximation to f, which is defined in (2.3). Here,

® Dnoise() is a proxy to p(T), -) for generating the target distribution from noise, which should
not depend on pyata(-). The form of pyeise(+) is related to the design of the diffusion model,
i.e., the pair (f(-,-),g(+)). In practice, we usually take ppoise(-) as N(0,T%I) for the VE
model and ppeise(+) as N(0, I) for the VP model.

o {sp(t,x)}y are function approximations to the score Vlogp(t,x), which are trained by
solving some stochastic optimization schemes. This technique is known as score matching,
and the learned sy, (t,x) is the score matching function. There are several existing score
matching methods, among which the most widely used one is the denoising score matching
(DSM) [43, [88]:

T 2
nbin/ A) Exompyara() [Extp(o so(t, X¢) — VIOgP(tht’XO)’ ] dt,
0

where A : Ry — R, is a weight function.

Most successful diffusion models rely on extensive score-matching training on large, generic
datasets and are therefore trained once in advance and reused across downstream tasks; such
models are commonly referred to as pretrained models. EL Throughout, we let the backward
process represent such a pretrained model. Denote by P[O,T](') the law of the process
{Yi}o<t<r on path space under which Ej 7j[-] is the associated expectation, and by Py(-) its
marginal distribution at time ¢ with E;[-] the associated expectation. We write

ppre(') = PT('):

to denote the output distribution of the pretrained model. A well-trained model is expected to
generate reliable samples in the sense that pp.. () provides a good approximation of the data dis-
tribution pgata(-). Under suitable conditions on the model components f(-,-), g(+), T, Pnoise(), So (-, )
and on the target distribution pgata(+), this approximation can be made quantitative by bound-
ing appropriate discrepancies between ppre(-) and pgata (). The following proposition bounds the
total variation and the Wasserstein distance between ppre(-) and pgata(-) for the aforementioned
VE and VP models.

Tt was shown in [49] that a wide class of diffusion models can be obtained from the VE model via reparam-
eterization. Consequently, in practice it suffices to pretrain a high-quality VE model, that is, to learn its score
function with sufficient accuracy.



Proposition 2.2. Assume that ]Epdata(')|X‘2 < 00, and that the score matching satisfies:

sup By |50, (1, X) — Vlog p(t, X)[2 < ep(resp. e2), (2.6)
o<t<T

for the VE (resp. VP) model. Then the following results hold.

1. (Total variation) [16, [81] There are Cyg, Cyp > 0 (independent of T') such that

Cue (T_I\/ Epgara ()| X[* + EVE\/T> for VE, @7

dTVpr *)s Pdatal* <
Prre): Panal)) = 4 (e \ B 01X + eV'T)  for VP.

2. (Wasserstein) [30, [81] Assume further that pgata(-) is k-strongly log—concaveﬁfor K suffi-
ciently large. There are Cyy, Cyp > 0 (independent of T') such that

Cve (T /E . a(,)]XP +ewT?) for VE,
W2 (ppre(')apdata(')) < ( _CwT Paat 2 ) (28)
Crp (7977 [Bpya )| XP +21p)  for VP.

The condition formalizes a black-box score-matching error, an assumption that is stan-
dard in the recent literature on the convergence analysis of diffusion models [16], 30} 54} 56, [82].
In this line of work, the statistical and algorithmic aspects of score estimation are treated as
a separate problem, and the learned score function is taken as an approximate oracle whose
error is summarized by . Complementary to this approach, there exists a body of work
[14, 34}, 53l 1] that derives quantitative rates for score matching itself, typically under struc-
tural assumptions such as low-dimensional or parametric representations of the score function
class sg(t,x),. However, state-of-the-art score-based diffusion models in practice rely on highly
expressive and deep neural network architectures [49] [78], for which such structural assumptions
are difficult to justify. For this reason, and in line with the convergence-focused literature, we
adopt the black-box score-matching assumption throughout this paper.

3 Diffusion guidance by conditioning

In this section, we introduce a Conditional Diffusion Guidance framework and establish the
mathematical foundations. Our focus is on enforcing hard constraints on the generated samples,
as opposed to encouraging desirable outcomes through soft reward signals.

Let S € R? be a Borel set, which we refer to as the guidance set, and denote by pgata(-) the
target distribution conditioned on S. That is, for a random variable Z ~ pgata(-),

(Z ’ Ze S) Npgata(')'

The set S encodes the event or structural constraint of interest and may represent a wide
range of conditions on the data, including discrete labels, functional constraints, rare events, or
application-specific admissible regions. For example, in time-series generation, .S may character-
ize regimes exhibiting certain statistical or dynamical properties, such as high or low volatility
periods, prescribed terminal values, or specific temporal patterns. Throughout, we assume that
S is sufficiently regular (e.g., Borel and non-negligible) so that the conditional distribution
P () is well-defined.

From a modeling perspective, conditioning on S imposes a hard constraint, in the sense
that generated samples are required to satisfy the event {Z € S} almost surely. This should

3A smooth function £: R? — R is k-strongly log-concave if (Vlogé(x) — Vlog{(y), (z — y)) < —k|z — y|? for
all x,y.



be contrasted with the more commonly studied soft conditioning or reward-based guidance
approaches. While soft constraints are often easier to optimize, they generally do not guarantee
constraint satisfaction and may yield samples that violate physical laws, feasibility requirements,
or operational rules. Hard conditioning is substantially more challenging, particularly when
the event {Z € S} is rare under the data distribution, causing the conditional law p3 .. (*)
to concentrate on low-probability or geometrically thin regions of the state space. In such
settings, naive rejection sampling or reward-based reweighting becomes ineffective, and enforcing
the constraint typically requires modifying the entire generative trajectory rather than only
its terminal distribution. These considerations motivate a conditioning-based framework that
directly targets the conditional law associated with the event {Z € S}.

Our framework can be easily extended to settings in which the guidance set S is specified
implicitly through a measurable functional F' : R — ), so that the conditioning event takes
the form

F(Yr) € S. (3.1)

This formulation covers constraints such as conditions on cumulative or averaged quantities,
path-dependent risk measures, tail events of aggregate observables, and system-level performance
metrics arising in operations research and related application domains. It also accommodates
multi-objective guidance by taking F = (Fy,--- , Fg) : R* — RX and imposing hard constraints
Fy(Yr) € Sy for each objective. Pluralistic alignment can be modeled by allowing multiple
acceptable guidance sets {S(j)}jK:l C RX, corresponding to distinct alignment criteria, and
targeting a mixture of the resulting conditional distributions.

The problem of interest is to exploit a given pretrained models to generate samples that
approximate the conditional distribution paqata(-). Recall that ppre(-) denotes the output dis-
tribution of the pretrained model (2.4), and let pgre(~) be its conditioning on S. As discussed
in Section a well-trained pretrained model yields ppre(-) & Pdata(-), Which in turn implies
pgre(~) ~ P53, (-) under mild assumptions on the guidance set S (see Section . Therefore, our
goal is to use the pretrained model to sample from pgre(-), or more precisely, to generate sample
paths

{Y Yoci<r ~ Pomy(Y | Yr € 5). (3:2)

3.1 Conditional diffusion sampling

We start by discussing how the process {Y;°}o<;<r is generated. To make the framework mean-
ingful, assume that P 7(Yr € S) > 0. For ¢ > 0, let

h(t,y) := Po(Yr € S|Y: = y). (3.3)
By the Bayes rule, we have for s > 0,
Pom(Yirs =y, Yr € S|Y; =)

P[O,T](YT es ’ Y = JI)

h(t+ s,y") ,
= 7P s — = y
h(t,y) [O,T]()t-&- ¥ |Yi=y)

Por(Yess =4 | Y=y, Yr € 8) =
(3.4)

which is known as Doob’s h—tmnsformﬁ Note that h(t,y) := P (Yr € S|Y: = y) is harmonic
with respect to the generator of {Y;}o<¢<7 which satisfies the following second-order PDE:

_ 1
Oth + f(t,y) - Vh + 5g(t)?Ah =0, (3.5)

4Doob’s h-transform is a general concept of conditioning a Markov process, provided that h is harmonic with
respect to the Markov generator. In our setting, the h function arises as a special case by conditioning on
the terminal data. The “bridge” calculation in can be understood in terms of transition densities, see [27]
Section 2] for a justification.



with the terminal condition A(T,-) = 1(- € S). It is well known that the solution to the linear
parabolic equation is smooth in [0,T") x R? if g(-) is bounded away from zero, and f(-,-),
g(-) are Holder continuous (see [29, Chapter 3, Theorem 5] or [44] Theorem 6] for the interior a
priori estimate).

The h-transform reveals a change of measure between the processes {Y;}o<i<7 and
{V;%Yo<t<r- As a result, {Y;"}o<i<r is also a diffusion process, whose dynamics is given in the
following proposition.

Proposition 3.1. The distribution of {Y;°Yo<i<T is governed by:
Yy = (J(t, ") +9()*VIogh(t,Y,)) dt + g(t)dBe, Y5 ~ Proise(-), (3.6)

where By is an F-adapted Brownian motion; f(-,-) and g(-) are given by the pretrained model
[24). Define Y3 = lim;_,7Y,®, then we have

Y7$ Npgre(')' (37)

The proof for (3.6 is a direct application of (3.4)) and Girsanov’s theorem (see [71], IV.39]
and [48, Theorem 2]). The key is to prove (3.7) using a limiting argument.

Proof. By standard PDE estimates, we have for each ¢ > 0, h € CH2([0,T — €] x R?%) and
h(t,y) > 0 on [0,T — €] x R, In addition,

Ep [exp (% /OT_E llg(t)V log h(t,Yt)Hth)] < o0. (3.8)

Let Q := C([0,T];R%), Y;(w) := w(t) be the coordinate process and F; = o(Ys : s < t) the
canonical filtration.

First, let us defined the normalized terminal indicator Z := PI(YLS). For ¢t € [0,T], set
10,71 (YT €S)
M, = E[Z|F;]. Then
Ep(Z|F)] = L pen(YreSIF) = — hiY)
r " Por(Yr € 5) OTRET ' Por(Yr e S) "

using the Markov property. Morevoer, since (M;) is uniformly integrable martingale (bounded

1
by W)’ we have

M; — My =27 ¢ L' and a.s., ast — T. (3.9)
For each € > 0, define a probability measure on Fr_. by
Q°(A) :=Ep[laMp_], Ae Fr_..
If 0 < & < ¢, then Q° and Q¢ agree on Fr_.:
Q7 (A) = Ep[laMy_o] = Bp[LaEp[My_o|Fr_.]] = Q°(A) (3.10)

since {M;}+>0 is a martingale. By Carathéodory’s extension theorem on the increasing sigma-
fields, there is a unique probability measure Q) on Fr_ := (Ui Ft) such that Q|z, . = Q° for
all e > 0.

Let A € Fr_, by taking a sequence A, € F;, with t, — T such that 14, — 14 in L', we
can show that
P[07T}(An N {YT € S})

Q(An) = Eplla, Me] = Pom(Yr € 5)




Let n — oo and use dominated convergence on both sides (everything bounded) to obtain
Q(A) = Po(AlYr € 5) (3.11)

Define the conditional process Y° as the coordinate process under @Q: on canonical path
space € with coordinate map Y;(w) = w(t), set

Y;S :=Y;, as a random variable on (Q, Fr_, @), 0<t<T (3.12)

Fix € > 0 and for ¢ € [0,T — €], applying Ito’s, (3.5) and (3.9) give
dMy = Mg(t)Vlog h(t,Y) - dBy

Thanks to (3.8), Girsanov can be applied on [0, T—¢]. In addition, BtQ = Bt—fot g(s)Vlogh(s,Ys)ds
is a Q-Brownian motion for t < T — e. Substituting into (2.4)), for t < T — ¢,

dY: = (F(t,Ys) + g(t)*Vlog h(t, V7))t + g(t)dBf (3.13)

Using the identification (3.12)), this is exactly the claimed dyamics for Y on [0,7 —¢] in (3-6).
and since € > 0 is arbitrary, it holds for all t < T.

Finally, define the terminal value by Y:,5 = limy_,7 YY;S which exists @Q-a.s by path con-
tinuity. Moreover, for any Borel A € R? the event {Yj? € A} belongs to Fp_ because
Yj? = limy, oo Yj:il/n
Hence, by applying with A replaced by {Yf € A} yields

QY € A)=Por(Yr € AlYr € S),  AeBRY).

This completes the proof.
O

As noted in [86, Appendix B], the dynamics (3.6) can be interpreted as classifier-guided
diffusion sampling [20] in continuous time. Let P[g T](-) denote the law of the guided process
{Y,%}o<t<T, and P?(-) its marginal distribution at time ¢. By (3.7), simulating the dynamics

(3.6) produces a terminal sample
S S S
YT ~ PT() = ppre(')'

Given a pretrained model, the only unknown component in (3.6) is the guidance term V log h(-, -),
which enters the dynamics directly.

3.2 Learning h function

As explained in Section the key challenge in sampling the guided process {Y;S Yo<t<r lies
in learning the function h, or more precisely, its logarithmic gradient Vlogh. Since Vlogh =
(Vh)/h, a good approximator hg to h does not guarantee that V log hg is close to Vlogh(-,-).
Hence, a natural strategy is to learn the numerator Vh and the denominator h separately.
Accordingly, Section focuses on learning h, while Section addresses the estimation
of Vh. The main analytical tools we employ are drawn from stochastic analysis, in particular
martingale theory and the quadratic variation of stochastic processes.
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3.2.1 Learning h via martingale loss
By applying It6’s formula to h(t,Y:), we get:

dh(t,Y:) = g(t)Vh(t,Y;) - dBy, (3.14)
which leads to the following classical result.

Proposition 3.2. Let {Y;}o<i<1 be the pretrained model defined by (2.4), and h(-,-) be defined
by (3.3). Then the process {h(t,Y:)}o<i<T is a local martingale.

A natural idea is to exploit the (local) martingale property E| of {h(t,Y:)}o<i<r to learn
the function h. Assume that {h(t,Y;)}o<i<r is a (true) martingale. By the L? projection of
conditional expectations, the h function (3.3|) uniquely solves the following optimization problem:

r 2
(e o) [/0 (ﬁ(th) —1(Vr € S)) dt] ,

where
T
K :=<{¢:]0,T] x RY|¢ is Borel measurable and E[/ E(t,Yt)Q} < 00 .
0

Now we restrict our search within a class of parametrized functions {hy(t,y)}s to approxi-
mate h(t,y). This leads to the martingale loss objective to learn the h function:

min Efg 7 [/OT (hd,(t, Y)) — 1(Yr € S))2dt] (3.15)

Remark 3.3 (Efficient off-policy learning). Note that our learning objective is purely off-policy,
in the sense that it relies only on trajectories gemerated by the pre-trained diffusion model
{Y:}o<t<r, rather than on on-policy dynamics induced by the currently learned control or guid-
ance mechanism. The latter evolves during training and may be unstable over time, particularly
when the imposed constraints correspond to rare events. This feature fundamentally distinguishes
our approach from control-based methods that rely on Doob’s h-transform for guidance, which
inherently operate on on-policy controlled dynamics [19, 25, 67, [{2]. Related off-policy ideas
have recently been proposed and analyzed in [59] for a different purpose, namely to address
observability challenges in reinforcement learning under model uncertainty.

Denote by hg, (t,y) the learned h function by solving the stochastic optimization problem
(3.15)). The algorithm for conditional diffusion guidance via martingale loss (CDG-ML) is sum-
marized as follows.

The logic of Algorithm @ is that if hg, is a good approximation to h, then so is Vlog hg, to
Vlogh. This is not always true mathematically, but can still serve as a simple computational
proxy to Vlog h.

3.2.2 Learning Vh via quadratic variation

Recall that Vlogh = ¥ We have seen that the denominator h can be learned by means of the
martingale loss (3.15)). Now we explain how to learn its gradient VA by exploiting the quadratic
variation of {h(t,Y:)}o<i<r. Recall from (3.14]) that

d
k=1

SLocal martingales are a continuous-time phenomenon [62], Theorem I1.42], i.e., there are no (strict) local
martingales in discrete time. It is well known that a uniformly integrable local martingale is a (true) martingale,
see [0, Chapter II]. In our setting, a sufficient condition for {h(t,Y:) }o<i<r to be a (true) martingale is that g(-),
|Vh(-,-)| are bounded.
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Algorithm A Conditional diffusion guidance via martingale loss (CDG-ML)

Input: pretrained model {Y;}o<i<7 (2.4)), guidance set S, parametrized family {hy(t,v)}4
Step 1. Solve the stochastic optimization problem (3.15]) that outputs ¢..
Step 2. Sample

dY® = (F(1,Y;%) +9(1)*V log hy, (1, Y;")) dt +5(t)dB,

- (v + g el

dt 7td37YSN noise(")-
Pl )+ gle)0B Y ~ )

Output: Yj:q.

where {BF}o<i<r is the k-th coordinate of {B;}o<i<7. Also denote by {Y*}o<i<r the k-th
coordinate of the pretrained model {Y;}o<i<7. For each k =1,...,d, the covariation of h(t,Y?)
and Y} is:

dh, Y*]; = G(t)?0kh(t, Y;)dt, (3.16)

see [70, Chapter 1V] H Put it compactly,
d[h,Y): = g(t)2Vh(t, Y;)dt. (3.17)

By substituting i on the right side of (3.17)) with hy,, and approximating Vh(t,y) by a class of
parametrized functions {qy(t,y)}y, we derive the covariation loss objective:

T 1 dhe Y] g
/0 (g(t)2 dt qd’(t’yto dt]- (3.18)

Denote by gy, (t,y) the learned gradient of h by solving the stochastic optimization problem
(3.18). The algorithm for conditional diffusion guidance via martingale-covariation loss (CDG-
MCL) is summarized as follows.

Inwin ]E[O,T}

Algorithm B Conditional diffusion guidance via martingale-covariation loss (CDG-MCL)

Input: pretrained model {Y;}o<i<7 (2.4)), guidance set S, parametrized families {h4(t,y)}4,
{ay(t.y)}y

Step 1. Solve the stochastic optimization problem (|3.15)) that outputs ¢,.

Step 2. Solve the stochastic optimization problem (3.18]) that outputs 1)..

Step 3. Sample

dyy = (f(t,YtS) +g<t>2W) dt +9(t)dB1, Y5 ~ Puoise(-).

Output: YTS.

In Algorithm we write Vlogh = %, and estimate the numerator Vh and the denominator

h separately. We first learn the h function via the martingale property of {h(t,Y?)}o<t<r, and

5The equation (3.16) can be understood as:

(h(t + 8, Yirs) — h(t, YD) (Vs — V)
(%3

There have been a body of works [0}, 17, [24] [39] 40}, 46] on the statistical estimation of quadratic variation. These
papers consider how to estimate the quadratic variation of a process from a single trajectory in the context of
(financial) time series. Here we have a different scenario, where the pretrained model {Y;}o<;<r under Py 1)(-)
can be sampled repeatedly. The relation @ naturally provides an approximation to Jxh by regressing the left
side term over (¢, Y:).

~ Orh(t,Y:), for sufficiently small 6 > 0. (%)
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then learn its gradient by using the (quadratic) covariation of {h(t,Y}:)}o<i<r and {Yi}o<i<r.
Denote by ﬁgre(-) the distribution of the output Y7 in Algorithm [A] or B

4 Theoretical results

In this section, we provide theoretical results of the Conditional Diffusion Guidance framework
introduced in Section 2l The total variation and Wasserstein distance between the conditional
target distribution p3 . (), and the diffusion guidance ﬁgre(~) output by Algorithm [A| or B are
studied in Section [4.1] and respectively. In Section [4.3] we explore the convergence of the
stochastic optimization algorithms to learn the h function.

4.1 Total variation bounds

This part studies the total variation distance between p3,..(-) and ﬁgre(-).

Recall from Section [2| that p(¢,x) is the probability density of the forward process ,
and sg, (t,x) is the score matching function of the pretrained model. Also recall from Section
that P7(-) is the (marginal) distribution of ¥;* defined by (3.6). Below we present a few

assumptions.
Assumption 4.1.

(i) drv(p(T,+), Proise(+)) < 00.

(ii) The score matching satisfies: SUPg<i<T Ep(t7,)|39* (t, X) — Vlog p(t, X)|2 < g2,
(iii) There is p > 0 such that pgaa(S) > p.

() Thereisn > 0 such that |Vlogh—Vloghg, | < for Algorz'thm or ‘Vlogh — %7* <

oo for Algorithm [B. ’

The assumptions (i)-(ii) ensure that pgata(-) and ppre(-) are close. The assumption (i47)
indicates that the guidance set S is non-negligible, so the conditional distributions on S are
well-defined. The assumption (iv) provides blackbox errors for learning V log h |Z|, which will be
further developed in Section [4.3

First, we bound the total variation distance between p3 .. (-) and pgre(-).

Lemma 4.2. Let Assumption [{.]] (iii) hold. We have:

dry (55 (), D)) < idmppm(-), Pdata(’)). (4.1)

"The assumption (v) means that the function Vlogh can be learned pointwise. Note that in Algorithm
and [B] the h function is learned by solving stochastic optimization problems using the pretrained samples under
Pro,71(+). So a more “reasonable” hypothesis is that Vlogh can be learned under the pretrained distribution:

2
2

qw*(ty) <, (**)

sup E;|Vlogh(t,Y) — Vioghs, (t,Y) <n° or sup E, ho (1Y)

0<t<T 0<t<T

Viogh(t,Y) —

which will be studied in Section As will be clear in the proof of Lemma [4.3] we need (technically):

2
Viogh(t,Y) — M‘ <2

sup Ef [Vlogh(t,Y) — Vioghe, (t,Y)|> <n* or sup E7 n
6. (8Y)

0<t<T 0<t<T

to establish the total variation bound. That is, Vlogh can be learned under the conditional guided distribution
P[gyT] (+). Our conjecture is that using sufficiently rich function approximations, the function V log h can be learned

pointwise, so it does not matter whether the evaluation is under Pjo rj(-) or P[“g,T] ().
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Proof. Without loss of generality, assume that ppre(-), Pdata(-) have densities. We have:

dTV (pl:s;re( ) pdata / ’ppre pgata(x)‘dw
— / ppre(l') o pdata(w) da
2 ppre(s) pdata(s)

(4.2)

1

< m <|ppre(S) _pdata(5)| + /S ]ppre(x) _pdata($)|dl'>
3

= deV(ppre(')v Pdata(-)),

where the third inequality follows the triangle inequality [ppre(Z)pdata(S) — Pdata(Z)Ppre(S)| <

ppre($)|ppre(s) - pdata(5)| + ppre(S) |ppre(x) - pdata(x)|' Combining " with the fact that
Pdata(S) > p yields the bound (4.1). O

The next lemma bounds the total variation distance between the conditional pretrained
distribution pgre(-), and ﬁgre(') output by Algorithm [A|or

Lemma 4.3. Let Assumption[{.]] (iv) hold. We have:

dry (Dpre(-); Ppre()) < n\/f- (4.3)

Proof. Recall that p, (t,y) denotes the function approximation for Vlogh(t,y) in Algorithm (A .

or (i.e., Vloghg,(t,y) in Algorithm I and ;1;”* Et ; in Algorithm . Note that

dKL(pgre(')7 ﬁgre(')) < dKL(Yig’ }71*?)

T ) (4.4)
—& [ |[Viogh(t,Y) - o, (1Y) dt < 7P,
0

where the first inequality follows the data processing inequality, and the second identity is a
consequence of Girsanov’s theorem. Further by Pinsker’s inequality, we get the bound (4.3]).

Combining the above two lemmas yields the following result on the total variation distance
between ﬁgata(-) and ﬁgre(-).

Theorem 4.4. Let Assumption hold. We have:

dTV(pgata(')a 5§re(')) = 23[)dTV( (T’ ')a pnoise(')) + <§Z + 7]> \/f (45)

In particular, assuming that IElpdm(.)|X|2 < o0, there are Cyg,Cyp > 0 (independent of T') such
that

%T_l Penta- |X|2 (3€VE +77) \/> for VE,

dTV(pgata(')a ﬁgre(')) <
%G—CVPT Epdata(')‘X‘2 <3€VP +77> \/> for VP.

Proof. 1t follows from [81, Theorem 5.2] that

(4.6)

T

dTV(ppre(')» pdata(‘)) < dTV(p(T, ')7 Pnoise(')) + 6\/;.

Combining this with Lemmas andyields the bound (4.5)). The rest of the theorem follows
from (4.5) and Proposition O
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4.2 Wasserstein bounds

Here we consider the Wasserstein-2 distance between p3,, . (+) and ﬁgre(-), which is more involved
than the total variation bounds. Note that we cannot bound the Wasserstein distance between

Piata(") and p5..(+) in terms of that between ppre(+) and paata(-) as in Lemma Our analysis
relies on coupling and Malliavin calculus.

Let us introduce few more notations. Denote by Py T](-) the distribution of the (true) time
reversal (2.2)) of {X;}o<t<7 and let h(t,y) = PP, T}(YT € S|Y; = y) be the associated h function.

Let P[%’S}( ) be the conditional distribution of Py, T]( ) on {Yr € S}, and Pto’S () be its marginal
distribution at Y; € S. We need the following assumptions.

Assumption 4.5. We make the following assumptions and take t € [0,T) below.
(i) Wa(p(T,"), Proise(-)) < 00.
(i) There is a > 0 such that (x —y) - (f(t,z) — f(t,y)) > a|z — y|? for all t,x,y.
(iii) There is k1 > 0 such that p(t,-) is k1-strongly log-concave for all t.
(iv) There is € > 0 sufficiently small: |sg, — V1ogpleo < €.
(v) There is ko > 0 such that h(t,-) is ka-strongly log—concave for all t.

(vi) There is G : R? — Ry such that |V log h(t,y)| < for all t,y.

(vii) There isn > 0 such that |Vlog h—Vloghg, | < for Algomthml, or ‘V]ogh
oo for Algorithm Bl

N

* 100
T, [*Vf(rY:)dr2 _ 2
(viii) There is F' > 0 such that Bl 1 (f; leJ: |pdu | Y, =y) < F* for all t,y.

(ix) There is v > 0 such that E[OT [ft e SV Ye)dr _ o f VI (rYy) yr |2, du‘Yt —y} < 42 for
all t,y.

(x) There is K > 0 such that E?’S [iol(t, Y)_%} , E?’S [G(Y)2h(t Y)~ %} < K for all t, where
G(-) is defined in (vi).

Before stating our result, we make several comments on Assumption

The conditions ()—(iv) can be used to bound Wa(paata(-), Ppre(-)), which together with (vi7)
yields an estimate of Wa(p3,,,(+), pgre(-)) involving a perturbation bound on Vlogh. The con-
ditions (v)—(x) are required for the perturbation analysis of V log h via Malliavin calculus.

Note that the condition (iii) holds for the VE and VP models, if pgata(-) is strongly log-
concave. The condition (iv) is stronger than Assumption [4.1] (i) for the same reason as explained
in the footnote @. (In fact, it suffices to assume an L? bound under the guided distribution in
Algorithm [A]or [B]) Finally, the condition (vi) is reasonable since it holds for heat(-like) kernels.
Finally, conditions (viii) and (ix) are satisfied when f and f~ are differentiable in 2 and uniformly
Lipschitz.

Remark 4.6 (Comparison to Assumption for the TV bound.). Although the Wasserstein
distance is a weaker notion of discrepancy than total variation, it has shown to align with human
Judgment on image similarity [10]. Technically, the derivation of Wasserstein bounds typically
relies on pathwise stability estimates for the underlying SDE, which require stronger reqularity
and growth assumptions on the drift. This explains why Assumption[{.] is more restrictive than
Assumption [{.1. In contrast, the total variation bound is obtained via change-of-measure and
martingale arguments, which do not rely on Lipschitz continuity or contractivity of the dynamics.
Thus, the two results are complementary: total variation bounds provide stronger distributional
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guarantees under weaker structural assumptions, whereas Wasserstein bounds yield weaker—but
geometrically interpretable—guarantees under stronger regularity conditions.

The following theorem provides a bound on Wa(p3,.. (), ﬁgre(-)).
Theorem 4.7. Let Assumption hold, and set A := o + (k1 + K2)g2,.x. We have:

W2<p§ata(')7 ﬁgre('» < eiATWQ(p(T; ')7 pnoise(')) + C(E +n+ ’7), (47)

for some C > 0 (independent of T'). In particular, assuming that Epdata(')|X|2 < 00, Pdatal*)
is k-strongly log-concave for k sufficiently large and Assumption (iv)—(xz) holds, there are
Cyg, Cyp > 0 (independent of T') such that

B Cve €7CVET\/EP aa(.)|X\2 +e+n+7v) for VE,
Wa(PSata()s Pore(-)) < ( - ) (4.8)

Crp (e_c'”’T1 /Epdata(')’X‘Q +e+n+ 7) for VP.

Proof. The proof is split into three steps.

Step 1. We start by establishing a coupling bound on Wa(p3, ., (+), ﬁgre(~)). Recall that e, (t,y)
denotes the function approximation for Vlog h(t,y) in Algorithm [A|or [B| (i.e., Vloghe, (t,y) in

Algorithm [A] and Zﬁ* ((i’z)) in Algorithm .

Consider the coupled equations:

{ U, = (?"(t, Uy) +3(1)2V log h(t, Ut)) dt +g(t)dB;,
dVy = (f(t, Vi) +G(t)* g (. Vi) dt +g(t)d By,

where (Uy, V) are coupled to achieve Wa(p(T, ), Pnoise(-)). Note that Wg(pgata(-), ﬁgre(-)) <
E|Ur — V|2, so our goal is to bound E|Ur — Vr|?. By Ité’s formula, we get:
AU~ Vi = 20, Vi) - (= J(T 1,0) + 50V log p(T 1, Uy) + 5(4)°¥ log (1, )
ST = 4,Vi) = g0)%s0.(T = £, Vi) = 51210, (£, Vi) ),

which implies that

1dE|U, - Vi|* _

St = —ElWU — Vi) - (F(T = t,U) = (T V)]

(a)
+ () E[(U; = Vi) - (Vlog p(T — t,Ut) — s, (T — t, V7)) (4.9)
(b)
+g(t)° E[(Ur — Vi) - (Vog h(t, Up) — pe. (t, V2))] -
(o)
By Assumption (ii), the term (a) > aE|U; — V;|?. For the term (b), we get:
(0) =E[U: = Vi) - (Viogp(T — t,Uy) — Vg p(T — 1, V4))]
+E[(Ut = Vi) - (V1ogp(T — t, Vi) — s0,(T — £, V1))] (4.10)
< —k1 E|U; — Vt\2 + eVE|U — V|2,
which follows from Assumption (797) and (4v). Similarly, we have:
(¢) = E[(U; — Vi) - (Vlog h(t, Uy) — Vlog h(t, Uy))]
+E[(Ut — Vi) - (Vlog h(t,Ur) — Viogh(t, V4))]
+E[(U; — Vi) - (Viog h(t, Vi) — pg. (., V2))] (4.11)

< —maB|U; — V32 + <17 + \/E|Vlog h(t,Uy) — Vlog h(t, Ut))\2> VE|Uy — Vi |?
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which follows from Assumption 4.5 (v) and (vii). Combining (4.9)), (4.10) and (4.11)) yields:

dE|U; — Vi |?
’Utdt Vi < —2AE|U; — V;?

+ ngnax <\/E]V10g foL(t, Uy) — Viogh(t,U))|? + e+ 77) VE|U; — V|2,

(4.12)

Step 2. Throughout this step, we fix t € [0,7T). Now we apply Malliavin calculus to bound
IV log h(t,y) — V1og h(t,y)|. First we consider |h(t,y) — h(t,y)|. It follows from [28, Proposition
3.1] that for € > 0 sufficiently small,

[h(t,y) — h(t,y)|

T
<C 'IE[O - [ (Yr € S)/ G(u)(Vlog p(T — u, Yy) — sp<(T — u, Yy))dBy | Yy = y] |

(4.13)
<Cgmaxm\/ [OT ‘Vlogp( Y)—se*(T—u,Yu))‘Qdu Yt:y]

< CgmaxVT — t h(t, Y) €,

where the second inequality is by the Cauchy—Schwarz inequality, and the last inequality is due
to Assumption (iv).

Next we bound |Vh(t,y) — Vh(t,y)|. Introduce the first variation process {Zy }t<u<r which
solves:

dZ, = Vf(u,Yy) Zydu, Zy = I.
So Zy =exp ([, Vf(r,Y;)dr) (here V[ is a matrix.) By [28, Proposition 3.2],

(Yres) (T z, 1(Yr e 8) [T el VIitYedr
vt = o (= [ Sen) _E”ﬂ( T )

A similar argument as before shows that

IVh(t,y) — Vh(t,y)| < (d) + (¢), where

o 1(YT S S) /T eftu Vf(r,Yr)dr
YN T S e

(d)=C

dB,

T
/t g(u)(Vlegp(T —u,Y,) — sg(T — u,Yy))dBy

v, y) ‘ (4.14)

i W(YreS) [Te STy _ VT (Y )dr
= B Y - .
(e> [O,T} < T ¢ /t g(u) d U t )
For the term (d), we have:
1
d) < Yk JevEeyar2 gy, — ) L
(d) < (T t)g OT] |€ |Fdu =Y

T
/t g(u)(Viegp(T —u,Yy) — so(T —u,Y,))dB, | Yz

—
=0
!

VR

C . 1 Toruyy ’
R S L) ge [N F(rYr)dr 2 du Y, = maxEV 1L —t
< (T_t)gmin€ (t,y)4 { 0.7] </t lelt |pdu|Yr =y (9 6\/7>
< Cgmaxl’ h(t,y)1, (4.15)
Jmin
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where the first inequality is due to Hélder’s inequality, the second inequality follows from the
moment inequality (see [70, Chapter IV, §4]) and Assumption (iv), and the final inequality
is by Assumption (viii). For the term (e), we have:

(e) g =y \/ (t,y) \/ [OT ‘eft ViYy)dr _ o[ VT (rY2)dr|2 gy,

1 gl
_gmin T—t

" y) (4.16)

hit.y),

where the first inequality is by the Cauchy Schwarz inequality, and the second inequality follows

from oAssumption (iz). Applyinng (4 and into and combing with the fact
that h(t,y) <1 yields:

IVh(t,y) — Vh(t,y)| < C <FE + h(t, y)i, for some C' > 0. (4.17)

i
=)
Combining (4.13)), (4.17) and Assumption [£.5 (vi) leads to:

}Ol(t7 yo) — h(ta Yy
h(t,y)

Vh(t,y) — Vh(t,y)
h(t.y)

SC{<F+ C;(y_)t)eJr \/%}il(t,y)i.

Step 3. Observe that {U}o<i<r is distributed by P[%“:qp . By (4.12] -, - and Assumption
(x), we have:

dE|Ut—Vt|2 9 e+
—— < —-AE|U; -V, C VE|U — V2. 4.19
dt > | t t| =+ 5+n+m | t t| ( )

Vlog h(t,y) — Vlogh(t,y)| < )V 10g ht,y)| +

(4.18)

By Gronwall’s inequality (see [22] Theorem 21]), we get:

T €+ 2
E|Ur — Vp|? < <6_ATW2(p(T, ), Proise(+)) + C/ <s +n+ = 7t> e‘A(T_t)dt)
0 —

< (e TWAP(T. ), prase()) + Cle+ 1))

which leads to the bound (4.7)).
The rest of the theorem follows from the fact that W3 (p(T,), pnoise(+)) < E, data ()X 2 for
VE, and Wa(p(T, -), proise()) < e “TE,,... (7| X|* with C > 0 for VP. O

4.3 Learning the h function

In this section, we study the convergence of the stochastic optimization problems outlined in
Section (Alogrithm [A| and to learn the function Vlogh. Our approach is generic, and
does not require any explicit structure of function approximations.

4.3.1 Learning h

We first consider the convergence of the stochastic optimization problem (3.15)). The stochastic
approximation to the martingale loss is given by

¢n+1 ¢n + 0 V(¢na Y(n)) (4.20)
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where 4, > 0 is the step size, 7" ~ Unif 0,77, y® = {Yt(")}ggtggp is a copy of the pretrained
model Py 7(-), and

V(7. Y) 1= —204hy (1, Yy) (ho(r, Yy) — 1(Y7 € 8)). (4.21)

Our goal is to provide a quantitative bound on |hg, (t,y) —h(t,y)| (in some weak sense). Our
idea follows from [84] Section 4], which relies on [7] for stochastic approximations. Set

V(9) = Ertieiorn) [Ep V(@ 7, V)] (4.22)
We need the following assumptions.
Assumption 4.8.
(i) The ODE ¢'(u) = V(p(u)) has a unique stable equilibrium ¢, |§|
(ii) There is C > 0 such that Ejoy[V(¢nt1,Y) | da] < C(1+ 62).
(iii) There is £ > 0 such that (¢ — ¢.)V(¢) < —L|p — ¢u|?.

(iv) There is a function w : Ry — Ry such that w(r)/r" is bounded for some v < 2, and
hg = hetloo < w(|@ — ¢'|) for all ¢, ¢'.

The assumptions (i)—(ii4) guarantees that the stochastic approximation (4.20]) converges,
and the assumption (iv) quantifies the sensitivity of the function approximation {hg(t,z)}e
with respect to the parameter.

Theorem 4.9. Let Assumption hold, and &, = n{iB for some ( <1, A > % and B > 0.
We have:

Efo.71lhg, — hloo < h = hg, oo + Cn~ %, (4.23)

where h is defined in ({3.3)).

Note that the upper bound in consists of two terms. The first term, ||h — hg, ||oo, TEP-
resents the approximation error induced by the functional class {h4}4. If the class is sufficiently
expressive to contain h, this term vanishes. The second term converges to zero as n — co. In
particular, choosing ¢ = 1 and v = 2 yields a linear convergence rate of order n~! for the second
term.

Proof. Tt follows from [7, Theorem 22] that under Assumption (1)—(iii) and 0, = ﬁ,

Ejo.77|én — ¢+ < Cn™¢. (4.24)
As a result,
Eo,1lhg, = hloo < |h = hg,|oo + Ejo 11lhe, — hg.|oo
< |h = he¢,|oo + Ejoryw(|dn — ¢])] (4.25)
< |h = hg.loo + C(El¢n — )2,

where the first inequality is from the triangle inequality, the second inequality is due to Assump-
tion (iv), and the last inequality is by the Cauchy-Schwarz inequality. Combining (4.24)) and

(4.25) yields the bound (4.23). O
The first term |h —hg, |o on the right side of (4.23) quantifies how well the family {hg(t,y)}¢

approximates the h function, and the second term n=% gives the convergence rate of the stochas-
tic approximation ([4.20)). In particular, if the family {h4(¢,y)}s is rich enough to contain the h
function (i.e., |h — hg, |0 = 0), and {he(t,y)}s is Lipschitz in ¢ (i.e, v = 1), then hy, converges
to h at a rate n”2 by taking the step size 1/n.

8¢, is the unique stable equilibrium means that V(¢) = 0 has a unique root ¢, and V’(¢.) < 0.
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4.3.2 Learning Vh

Now we establish similar results for the stochastic optimization problem (3.18). Fixing n > 0,
we use hg, to approximate the covariation, so the stochastic approximation to the covariation
loss is:

Ymt+1 = Ym + (%nun(wma T(m)a Y(m))v (4-26)
where L dhy Y]
e o bn s t
Us(07.Y) = =205 Y7) (1) = g el (427
Also set
Un(w) = Ervmir [0, {E[O,T} [un(d}a T, Y)] } (428)

We need the following assumptions.
Assumption 4.10.
(i) The ODE 9'(u) = Uy (v(u)) has a unique stable equilibrium 1.
(it) There is C >0 such that B m[Un(Yms1,Y) [¥m] < C(1+92,).
(iii) There is £ > 0 such that (¥ — ) Un () < —€)p — |2

(iv) There is a function w : Ry — Ry such that w(r)/r" is bounded for some v < 2, and

0w — Qg |oo < w(|t =) for all 4,9

Theorem 4.11. Let Assumption |4.10 hold, and ¢!, = m%ﬁ for some ¢’ <1, A > % and
B > 0. We have:

Epo.11ldpm — Vhloo < Ejo,1) g(;gcw — Vh(t, Y1) + Ejo1)[Vhg, — @l + Cm~F.
(4.29)
The proof of the theorem is in the same vein as that of Theorem [£.9] The first term
Epo,1 ( #% —Vh(t,Yy) D on the right side of quantifies how close the covariation
d[hi’ﬁ’y]t is to d[hczz/h. However, it is generally hard to provide an explicit bound on this termﬂ

and we simply denote it by #(n). Also note that the estimation of % also incurs a sample

error H which we do not pursue here. The second term |Vhy, — gy, |co measures how well the

family {q,(t,v)}y approximates Vhy, , and the third term m~%" is the convergence rate of the

stochastic approximation (|4.26]).
Combining Theorem and we have (at least heuristically) that the learning error n

of Vlogh is of order:

C,V/

2 + discrepancy of approximations {he(t,y)}¢, {qy(t, y) }y- (4.30)

O(n) + n_% +m”

Again if the families {hy(t,vy)}¢, {qy(t,y)}y are rich enough and Lipschitz in the parameter (i.e.,
v =1 =1), then 7 is of order 6(n) + n"E +mo2 by taking the step sizes d,, = 1/n, 0., = 1/m.

9Tt follows from [47, Chapter VI, §6¢] (and also [45]) that if a diffusion process {Z7 }o<t<r converges in distri-
bution to {Z;}o<it<7, and under very technical conditions, the quadratic variation of Z" converges in distribution

to that of Z. So d[hd’;t’ylt and d[ho‘lz/]t are expected to be close, because hg, ~ h by Theorem However, the
proofs in [45] [47] rely on soft measure-theoretic arguments, and it seems to be a challenging task to provide an
explicit convergence rate of quadratic variation.

10 As mentioned in the footnote , the quadratic variation can be estimated by sampling the pretrained model

dlhg, Y]t .
—ai 1S

repeatedly. So the central limit theorem implies that the sample error of estimating the covariation
of order 1/M, with M the sample size.
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5 Extensions

This section provides two extensions of the algorithms proposed in Section In Section [5.1
we consider a more efficient probability-flow ODE sampler. In Section [5.2] we discuss how
conditioning can be reinforced in the context of classifier guidance.

5.1 ODE sampling

Diffusion models admit an equivalent probability-flow ODE whose deterministic trajectories
preserve the target marginals, and ODE-based samplers are often more efficient than stochastic
SDE samplers due to reduced variance accumulation, improved numerical stability, and the abil-
ity to leverage higher-order adaptive solvers. In particular, our Diffusion Conditional Guidance
framework naturally extends to ODE-based sampling with minimal modification.

The ODE sampler for the pretrained model follows:

dYy

1
E - _f(tv }/t) + §Q(T - t)289* (T - tv }/t)v }/0 ~ pnoise(')‘ (51)

The following proposition is key to the ODE sampling of pgata(-).
Proposition 5.1. Let {X;}o<i<1 be defined by the SDE
dX; = f(t, X1)dt + g(t)dWy, Xo ~ Phaa(-),
and let {X{}o<i<T be defined by the ODE

X!
dt

1 .
= (8. X)) — 5 (Vlogp(t, X]) + VIog h(t, X)) . Xo ~ pfia("). (5.2)
Then X; and X| have the same distribution for each t.

Proof. Let p(t,z;9) := P(Xte;da:tj((%e)s)/dx’ and note that Vlogp(t, z;.5) = Vlogp(t,z)+V log lci(t, x).

Thus, dd—)? = f(t,X]) — £V logp(t, X}; S). The conclusion follows from [81, Theorem 6.1]. O

It is expected that Vlog il(t, y) ~ Vlogh(t,y). That is, the h functions are close under
Py T](') and Py 7)(-). Denote by pg,(t,y) the function approximation for Vlogh(t,y) in Al-

gorithm [A| or i.e., Vloghg, (t,y) in Algorithm [A| and 1% 9 Algorithm [B)). The ODE
- he, (t.y)

sampler of p3 . (-) follows

dy;?
dt

= *f(tv Y;‘/) + %Q(T - t)Q (89* (T -1, K&S) + K. (tv Y;ES)) ,Yb ~ pnoise(')- (5'3)

Algorithm [A] and [B] can be easily adapted to labeling and ODE sampling, which are sum-
marized as follows.

Note that Algorithm [B’| also requires the SDE sampler ([2.4), which is used to estimate the

covariation % in Step 2. This is because the ODE and the SDE sampler only agree in

distribution marginally, but not at the level of the process that is needed to approximate the
quadratic variation.

We also point out various numerical schemes to discretize the above continuous-time sam-
plers, see [81] Section 5.3] and [94] for the references. Since we rely on the pretrained model for
sampling, we will simply follow its built-in schemes (so we do not pursue this direction here).
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Algorithm A’ Conditional diffusion guidance via martingale loss (CDG-ML)

Input: pretrained model {Y;}o<i<r (5.1), label r(y), guidance set S,, parametrized family

{h¢ (ta y) }¢
Step 1. Solve the stochastic optimization problem (3.15)) that outputs ¢..

Step 2. Sample

dy;? 1_ 1_
g = Y0+ 5g(1)%s0, (T = 1,Y7) + 5g(1)*Vioghy, (£, Y,"), Y5 ~ Proisel:)-
Output: YTS.

Algorithm B’ Conditional diffusion guidance via martingale-covariation loss (CDG-MCL)

Input: pretrained model {Y;}o<i<7 (2.4) and (5.1)), label r(y), guidance set S, parametrized

families {h¢(t7 y)}¢v {qw (ta y)}w

Step 1. Solve the stochastic optimization problem (3.15)) that outputs ¢,.

Step 2. Use the ODE (5.1]) to sample Y;, and then the SDE (2.4]) to estimate %.
Solve the stochastic optimization problem ({3.18]) that outputs 9.

Step 3. Sample

dy® L_ 12 sy 10 (YE)
= —f(t,Y, —q(t T—-1tY, —g(t) ———=-.Y) ~ sel).
dt f( , t) + 29( ) 39*( y Xy )+ 29( ) h¢>* uY?g)a 0 pn01se()
Output: qu.

5.2 Reinforce conditioning

Central to the conditional sampling (3.6)) is the Bayes rule Po (Y |Yr € ) oc Pop(Yr €
SY) Py (Y), which guides the sample Y to a mode specified by the classifier Py 71(Yr € S|Y).
Classifier guidance [20] further strengthens conditioning with a guidance scale n > 0:

Poq|(Y|Yr € S) x Por(Yr € S|Y) Py 7 (Y),

which echos with [65] that empirical data sometimes infer physical laws differing from those
assumed in traditional modeling. See [41] for detailed discussions.
The resulting SDE sampler is:

avS" = (FEY5") + (L + gV og h(t, Y;")) dt + g(t)dBy

= (F(t, Y2 + G2 ()V log h(t, Y + ng*(t)V log h(t, Y,>"))dt + G(t)dB,. (5-4)
Condition'fsfgeneration strengthened conditioning

So the sampling step in CDG-ML (Algorithm A and A’) reads as:

S?

2y — (f(t,i/}s’n)+(1+77)g(t) N
¢ \by L ¢

) at - g(t)dBta YE)SM ~ pnoisc(')7 (5'5)

or

d}/iSﬂ? Sm 17 2 Sm 1 +777 2 Sm S
dt = —f(t,Y; ’ ) =+ §g(t) 39*(T - t,Y; ’ ) =+ Tg(t) Vlog h¢*(t7Y;f )7 YE) NPnoise(')?

(5.6)

and that in CDG-MCL (Algorithm B and B’) reads as:

S

_ _ Q. (£, Y _

Ay = <f ¥+ +”)g(”2m> A+ (dB, YE ~ puel), (5.7)
¢* P #
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or

dYtS’n S,n 1_ 2 S,n
dt :_f(tvyvt )+§g(t) 89*(T—t,Y; )+

S
L+n_, oqp (Y77 s
t * Yo~ o). (D.8
2 ( ) h¢* (t7 )ts’n), ‘ pnOISe( ) ( )

A crucial problem in classifier guidance is the choice of the scale 7. It was shown in [93]
that as w increases, the generation is steered toward the high-probability modes induced by the
classifier, while the sample diversity (in entropy) decreases. On the other hand, overly large 7
will lead to mode collapse.

6 Numerical experiments

In this section, we present numerical experiments to illustrate and validate the proposed Condi-
tional Diffusion Guidance framework. We test our framework on a synthetic example to visualize
the power of enforcing a sharp constraint. We then apply our framework to perform stress testing
in finance and supply chain systems. Across all three testcases, ur experiments are designed to
assess (i) the effectiveness of the martingale-based objectives for learning the guidance function
h and its gradient, (ii) the quality of the resulting conditional samples compared with the target
conditional distribution, and (iii) the empirical behavior of the method under finite-sample and
model-misspecification effects. In particular, we focus on demonstrating how the proposed al-
gorithms translate the theoretical guarantees developed in Section 4 into practical performance,
and how different guidance strategies impact sample fidelity and stability. All experiments are
conducted using pretrained diffusion models, emphasizing that the guidance procedure operates
as a lightweight post-training mechanism without modifying the underlying score network.

6.1 Synthetic examples

To demonstrate the effectiveness of our framework, we consider one-dimensional and two-
dimensional toy examples.

First, suppose we aim to generate data from the Gaussian distribution N'(1,4), and define the
endogenous guidance set as S = (3,00). When the target distribution is Gaussian, its marginal
distributions along the diffusion process remain Gaussian (e.g., under a variance-exploding SDE
of the form dx = oldw,t € [0,1]). As a result, the corresponding score functions are available
in closed form, and we do not need to train a neural network to estimate them via denoising
score matching (DSM) [89].

We evaluate Algorithm Conditional Diffusion Guidance via Martingale Loss (CDG-ML),
and Algorithm Conditional Diffusion Guidance via Martingale—Covariation Loss (CDG-
MCL). The corresponding results are reported in Figures and respectively. To further
quantify the agreement between the generated samples and the target distribution, we conduct a
Kolmogorov—Smirnov (K-S) test. CDG-ML yields a K-S statistic of 0.0694 with a p-value
of 7.1 x 107126 while CDG-MCL yields a K-S statistic of 0.0437 with a p-value of 4.1 x 107,
In both cases, the relatively small K-S statistics indicate that the empirical distributions closely
match the target conditional distribution N(1,4) | (3,00), with CDG-MCL exhibiting a closer
fit.

Next, we consider a two-dimensional synthetic example with target distribution A(0,415)
and endogenous guidance set S = (1,00) x (1,00). As in the one-dimensional case, the marginal
distributions along the diffusion process admit closed-form expressions. The histogram of sam-
ples from the true conditional distribution is shown in Figure [2| To quantitatively assess per-
formance, we compute the 2-Wasserstein distance. Algorithm [A] yields a distance of 0.3451,
while Algorithm [B] achieves a substantially smaller distance of 0.0765. The corresponding gen-
erated histograms are presented in Figures [3a] and [3b] respectively. Both methods produce
reasonable approximations of the target conditional distribution N (0,412) | ((1,00) x (1, 00)),
with Algorithm [B| providing a closer match.
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6.2 Stress Testing

In this section, we illustrate how our Conditional Diffusion Guidance framework can produce
controlled perturbations of high-dimensional return distributions, allowing one to probe the
sensitivity of portfolio-level risk and tail behavior under targeted distributional shifts while
preserving realistic dependence structures. Specifically, we apply our CDG-ML and CDG-
MCL algorithms to real-world financial data and evaluate its economic relevance in constructing
[33]: (1) equal weight portfolios, (2) Markowitz minimum variance portfolios[61] and (3) risk
parity portfolios]68].

We use daily log-return data for U.S. stocks: AAPL, AMZN, TSLA, JPM from Jun 30,
2010, to Oct 7, 2025. We applied a mild 0.5% winsorization to the data, removed weekday
(Monday—Friday) seasonal effects, and standardized the series by dividing by its long-term stan-
dard deviation. We use standardized daily log-return data to construct a joint dataset of d
stocks over a rolling window of N consecutive days. Each window is shifted by one day to create
overlapping samples. In our setting, N = 64 (approximately three months) and d = 4.

We choose our guidance set S to be some stress scenario, e.g. selecting certain stocks whose
cumulative log returns over the last k days fall below a specified threshold (In our setting, let
TSLA last 10 days cumulative log-return smaller than -10%). We then apply three portfolio
management strategies: (1) equal weight, (2) Markowitz minimum variance, and (3) risk parity
on the first N —k days of the N x d data generated by CDG-ML and CDG-MCL, respectively.

The resulting portfolios are evaluated by comparing their cumulative returns over the final
m days (m < k) with those observed under real market conditions, where the same subset of
stocks exhibits cumulative log returns below the threshold. In our empirical example, we set
k =10 and m = 5. The detailed pipeline is shown in Appendix [E]

In our inference process, we employ the DDIM sampler, a deterministic sampler obtained
by discretizing the probability-flow ODE associated with the diffusion model [73]. Moreover,
thanks to the idea of the generalized Bayesian method by introducing a power likelihood [41],
we add one more hyperparameter 7 to adjust the magnitude of guidance. So the reverse time
sampling process becomes:

1
Ay = <—f(T —t.YE) 4 5 g% (T = 1) (50(T — .Y,%) + ¥V log h(t, Yf))) dt,  (6.1)
with YOS ~ Pnoise(+) and we have:

1
Flt2) = 2Bz, olt) = /B,
The noise scales of chosen to be linear:

B(t) = Pmin + (Bmax - Bmin) t, te [O, 1]

Moreover, using the idea that the step size should be scheduled according to the noise level
[77], we build the VP-SDE time grid by spacing time points according to the noise level. This
produces a decreasing time grid that allocates smaller steps when approaching the final stage.
Figures[d and [§] show how CDG-ML and CDG-MCL perform in recovering last-week portfolio
returns under the scenario where the cumulative log-return of TSLA over the last 10 days is
smaller than —10%. We can see that CDG-ML provides better results by introducing less bias.
The reason is that the training of ¢, in Algorithm @ highly relies on the accuracy of hg, , which
introduces more uncertainty. Moreover, as we have the freedom to choose the hyperparameter
n to adjust the magnitude of our guidance, we find that CDG-ML admits larger n (10? in
practice), whereas CDG-MCL only admits much smaller 1 (2 to 4 in practice). The detailed
results are shown in Table [T} and the bold entries indicate the closest statistics to the real ones
under the three portfolios, respectively.
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Algorithm E Portfolio Construction and Evaluation under Guidance Conditions

Input: Standardized daily log-return data {r:;} for d stocks over T days; window size N (e.g.,
64); guidance window k (e.g., 10); evaluation window m (e.g., 5); threshold 7 for guidance
selection.

Output: Cumulative return comparison between generated and real portfolios.

Step 1. Data Preparation:
fort=1toT — N +1do

Construct a rolling window dataset Ry = [res, req14, - - -5 e+ N—1,i]§l:1-
end for

Step 2. Guidance Set Selection:
Select a subset of stocks G such that their cumulative log-returns over the last k£ days satisfy
N i

Step 3. Portfolio Optimization:
for each model € {CDG-ML, CDG-MCL} do
Generate synthetic data R(medel) ¢ RNxd,
Apply the following portfolio strategies on the first N — k days:
1. Equal-weight portfolio: w; = 1/d
2. Markowitz mean-variance portfolio
3. Risk-parity portfolio

end for

Step 4. Evaluation:

For each portfolio, compute the cumulative return Reyy over the final m days (m < k):
Compare Rcy, under synthetic data with that under real market conditions where
Z;VZN_,H_I T4 < T fori € G.

Equal-Weight Portfolio (last 5-day sum) Min-Variance Portfolio (last 5-day sum) Risk-Parity Portfolio (last 5-day sum)

e Generated e Generated e Generated
Real Real Real

-0.15 -0.10 -0.05 0.00 X 015 -0.10 -0.05 0.00 0.05 0.10 015 -0.05 0.00
Sum of Log Returns Sum of Log Returns sum of Log Returns

Figure 4: Histograms of portfolio constructions via CDG-ML
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Equal-Weight Portfolio (last 5-day sum) Min-Variance Portfolio (last 5-day sum) Risk-Parity Portfolio (last 5-day sum)

Generated Generated Generated
Real Real Real

-020  -015 -0.10 —0.05 0.00 0.05 o0.10 -0.15 -0.10 —-0.05 0.00 0.05 0.10 -0.15 -0.10 —0.05 0.00 0.05 0.10
Sum of Log Returns Sum of Log Returns Sum of Log Returns

Figure 5: Histograms of portfolio constructions via CDG-MCL

Table 1: Different portfolios under CDG-ML and CDG-MCL.

Portfolio n Mean Std 5% Quantile 10% Quantile
CDG-ML
Equal Weight 150  -0.01671 0.03528 -0.07765 -0.05969
Min Variance 150 -0.0107 0.02935 -0.05792 -0.04515
Risk Parity 150 -0.01346 0.03045 -0.06351 -0.04830
Equal Weight 200  -0.02283 0.03366 -0.07734 -0.06229
Min Variance 200  -0.01408 0.02814 -0.05851 -0.04636
Risk Parity 200  -0.01832 0.02904 -0.06501 -0.05206
Equal Weight 300 -0.02684 0.03805 -0.09318 -0.07436
Min Variance 300 -0.01645 0.03274 -0.06807 -0.05313
Risk Parity 300 -0.02144 0.03316 -0.07917 -0.05969
Equal Weight 400 -0.03362 0.03651 -0.09959 -0.07433
Min Variance 400 -0.01781 0.03219 -0.06747 -0.05156
Risk Parity 400 -0.02606 0.03171 -0.08027 -0.05933
CDG-MCL
Equal Weight 2.00 0.00269 0.03852 -0.06214 -0.04575
Min Variance 2.00 0.00318 0.03157 -0.04954 -0.03688
Risk Parity 2.00 0.00310 0.03302 -0.05156 -0.03843
Equal Weight 3.50 0.00038 0.04985 -0.08207 -0.06466
Min Variance 3.50 0.00376 0.03548 -0.05806 -0.04131
Risk Parity 3.50 0.00232 0.03936 -0.06270 -0.04871
Equal Weight 3.75  -0.00027 0.05263 -0.08791 -0.06763
Min Variance 3.75 0.00254 0.03717 -0.06120 -0.04240
Risk Parity 3.75 0.00142 0.04193 -0.06425 -0.05295
Equal Weight 4.00 -0.00351 0.05507 -0.10200 -0.07298
Min Variance 4.00 0.00223 0.03862 -0.06777 -0.04824
Risk Parity 4.00 -0.00054 0.04347 -0.07861 -0.05559
Real Data
Equal Weight — -0.02882 0.03820 -0.09688 -0.07879
Min Variance — -0.01029 0.03601 -0.07422 -0.05638
Risk Parity — -0.02125 0.03606 -0.08584 -0.06821

6.3 Supply Chain Simulation

In this section, we demonstrate how conditional diffusion guidance can be used as a principled,
data-driven tool for generating stress scenarios in complex supply-chain and queueing systems,
enabling downstream simulation-based evaluation and capacity planning.

To start, we first demonstrate the performance of our framework in simulating conditional
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Figure 6: Density Comparison of Exp(1) and Exp(1)|(1, 00)

arrivals of events. Note that one advantage of using our conditional diffusion guidance is that we
can tune the degree of softness by varying 7, and generating samples that are empirically biased
to guidance set but still maintain diversity to some extent. As we shown in Figure[6] although we
generate exponential(1) data conditioning on (1, 400), it still admits small proportion (around
9 %) of data in (0, 1), which is more realistic compared to hard conditioning.

Next, we test our framework on generating conditional arrival times and service times in
queueing networks. We consider the hospital environment provided by QGym [12], which con-
sists of M = 8 patient types (Cardiology, Surgery, Orthopedics, Respiratory disease, Gastroen-
terology and endoscopy, Renal disease, General Medicine, Neurology) and N = 11 wards, each
ward having a fixed number of beds corresponding to the available servers. Admission is subject
to routing constraints: each ward can serve only 1-2 specific patient types, and patients who
cannot be admitted immediately wait in the appropriate queue. When a bed becomes avail-
able, the ward follows a classic policy called cu assignment rule [I8]: the action (i.e., job-server
assignment) is decided by

%leaﬁi( ‘ Z ' Cilhi5 Q5
1<i<M,1<j<N
where A € RM*N captures the routing constraints mentioned above. In this case, server j
prioritizes the queue with a larger c;u;;-index, where ¢; denotes the holding cost per job per unit
time for queue i (1 < i < M), and p;; is the service rate when server j (1 < j < N) processes a
job from queue i.

Based on the literature [2, 100, 50k 2], there is consistent evidence across temperate climate
zones (e.g., North America, Europe, and North China) that healthcare burdens exhibit strong
seasonal concentration, peaking in winter and, for certain specialties such as surgery and surgical
site infections, also during summer or high-temperature periods. In the context of a conditional
diffusion model, this periodic structure can be naturally exploited by designing guidance that
allocates higher arrival intensities and slower service rates—reflecting congestion—during these
critical seasonal windows. As a representative stress scenario, we consider the flu season, in
which elevated arrival rates combined with reduced service capacity imply that more patients
enter the system while recovery takes longer, leading intuitively to a pronounced increase in
total queue length.

Using the default hospital setting in the Qgym environment [12], the cu-rule yields a

28



450 A

400 A

350

300 A

Queue Length

250 A

200

0 5 10 15 20 25 30 35 40 a5 so  x10°
Figure 7: Limiting number of original queue length

stable total queue length (aggregated over 8 patient types) that converges to approximately 400
(Figure [7). Let Z; ~ Exp(\1) and Z; ~ Exp()2) denote the inter-arrival and service times,
respectively. To model seasonal effects, we condition the arrivals and services as Z; | Z1 < %AIT
and Z3 | 22%712, which induces an unstable queueing regime.

Here, we implement the diffusion process using a drift-free VE-SDE with exponentially
increasing diffusion g(t) = ot, and discretize time on a non-uniform grid constructed so that the
marginal perturbation standard deviation increases linearly across steps, yielding an analytically
tractable schedule that improves numerical stability during sampling. In addition, we set \; =
A2 = 1 and choose 1 ~ 12.

Under this setting, both the hard truncated exponential model (which admits an explicit
solution) and our soft-guidance framework in lead to diverging queue lengths. Nevertheless,
Figure [§] shows that the diffusion model with soft guidance leads to smaller divergence rates, as
it captures a broader range of arrival and service times.

We observe that queue lengths in wards with restricted routing—where certain patient types
can be served only by specific wards—are highly sensitive to variations in both arrival and ser-
vice rates. By inspecting the simulation logs, we find that the queues for patient types 6 and 7
exhibit explosive growth; accordingly, we double the number of servers assigned to these wards.
The resulting performance is shown in Figure[9] where the system converges after approximately
30,000 days of simulation. As in the unstable regime, conditional diffusion generation consis-
tently produces shorter queues than the blue benchmark, reflecting the smoothing effect induced
by soft guidance. These results highlight the sensitivity of the queueing system to small distribu-
tional shifts and underscore the need for additional server capacity in critical wards during peak
seasons. They also emphasize the importance of realistic simulators for stress testing, especially
in unstable or near-unstable regimes.
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Figure 8: Comparison of queue length under the guidance of shorter patient inter-arrival times
and longer service times (blue: hard truncated exponential distribution; orange: soft guidance).
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